3.5.84 \(\int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [484]

3.5.84.1 Optimal result
3.5.84.2 Mathematica [A] (verified)
3.5.84.3 Rubi [A] (verified)
3.5.84.4 Maple [A] (verified)
3.5.84.5 Fricas [A] (verification not implemented)
3.5.84.6 Sympy [F]
3.5.84.7 Maxima [F]
3.5.84.8 Giac [F]
3.5.84.9 Mupad [B] (verification not implemented)

3.5.84.1 Optimal result

Integrand size = 43, antiderivative size = 147 \[ \int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (35 A+49 B+27 C) \tan (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {2 (35 A-14 B+18 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{105 d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {2 (7 B+C) (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{35 a d} \]

output
2/35*(7*B+C)*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/a/d+2/105*a*(35*A+49*B+27*C 
)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/105*(35*A-14*B+18*C)*(a+a*sec(d*x+ 
c))^(1/2)*tan(d*x+c)/d+2/7*C*sec(d*x+c)^2*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c 
)/d
 
3.5.84.2 Mathematica [A] (verified)

Time = 1.69 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.79 \[ \int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a (35 A+28 B+54 C+3 (35 A+42 B+36 C) \cos (c+d x)+(35 A+28 B+24 C) \cos (2 (c+d x))+35 A \cos (3 (c+d x))+28 B \cos (3 (c+d x))+24 C \cos (3 (c+d x))) \sec ^3(c+d x) \tan (c+d x)}{105 d \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C* 
Sec[c + d*x]^2),x]
 
output
(a*(35*A + 28*B + 54*C + 3*(35*A + 42*B + 36*C)*Cos[c + d*x] + (35*A + 28* 
B + 24*C)*Cos[2*(c + d*x)] + 35*A*Cos[3*(c + d*x)] + 28*B*Cos[3*(c + d*x)] 
 + 24*C*Cos[3*(c + d*x)])*Sec[c + d*x]^3*Tan[c + d*x])/(105*d*Sqrt[a*(1 + 
Sec[c + d*x])])
 
3.5.84.3 Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.12, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {3042, 4576, 27, 3042, 4498, 27, 3042, 4489, 3042, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4576

\(\displaystyle \frac {2 \int \frac {1}{2} \sec ^2(c+d x) \sqrt {\sec (c+d x) a+a} (a (7 A+4 C)+a (7 B+C) \sec (c+d x))dx}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec ^2(c+d x) \sqrt {\sec (c+d x) a+a} (a (7 A+4 C)+a (7 B+C) \sec (c+d x))dx}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (7 A+4 C)+a (7 B+C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {\frac {2 \int \frac {1}{2} \sec (c+d x) \sqrt {\sec (c+d x) a+a} \left (3 (7 B+C) a^2+(35 A-14 B+18 C) \sec (c+d x) a^2\right )dx}{5 a}+\frac {2 (7 B+C) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \sec (c+d x) \sqrt {\sec (c+d x) a+a} \left (3 (7 B+C) a^2+(35 A-14 B+18 C) \sec (c+d x) a^2\right )dx}{5 a}+\frac {2 (7 B+C) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 (7 B+C) a^2+(35 A-14 B+18 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )dx}{5 a}+\frac {2 (7 B+C) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {\frac {1}{3} a^2 (35 A+49 B+27 C) \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^2 (35 A-14 B+18 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 (7 B+C) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {1}{3} a^2 (35 A+49 B+27 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^2 (35 A-14 B+18 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 (7 B+C) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {\frac {2 a^3 (35 A+49 B+27 C) \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a^2 (35 A-14 B+18 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 (7 B+C) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{7 d}\)

input
Int[Sec[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c 
+ d*x]^2),x]
 
output
(2*C*Sec[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(7*d) + ((2*(7* 
B + C)*(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*d) + ((2*a^3*(35*A + 49 
*B + 27*C)*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a^2*(35*A - 1 
4*B + 18*C)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d))/(5*a))/(7*a)
 

3.5.84.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4576
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Cs 
c[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b* 
B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m 
, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && 
NeQ[m + n + 1, 0]
 
3.5.84.4 Maple [A] (verified)

Time = 0.92 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.88

method result size
default \(\frac {2 \left (70 A \cos \left (d x +c \right )^{3}+56 B \cos \left (d x +c \right )^{3}+48 C \cos \left (d x +c \right )^{3}+35 A \cos \left (d x +c \right )^{2}+28 B \cos \left (d x +c \right )^{2}+24 C \cos \left (d x +c \right )^{2}+21 B \cos \left (d x +c \right )+18 C \cos \left (d x +c \right )+15 C \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{105 d \left (\cos \left (d x +c \right )+1\right )}\) \(130\)
parts \(\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 \sin \left (d x +c \right )+\tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}+\frac {2 B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (8 \sin \left (d x +c \right )+4 \tan \left (d x +c \right )+3 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right )}+\frac {2 C \left (16 \cos \left (d x +c \right )^{3}+8 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )+5\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{35 d \left (\cos \left (d x +c \right )+1\right )}\) \(176\)

input
int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, 
method=_RETURNVERBOSE)
 
output
2/105/d*(70*A*cos(d*x+c)^3+56*B*cos(d*x+c)^3+48*C*cos(d*x+c)^3+35*A*cos(d* 
x+c)^2+28*B*cos(d*x+c)^2+24*C*cos(d*x+c)^2+21*B*cos(d*x+c)+18*C*cos(d*x+c) 
+15*C)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*tan(d*x+c)*sec(d*x+c)^2
 
3.5.84.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.75 \[ \int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (2 \, {\left (35 \, A + 28 \, B + 24 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (35 \, A + 28 \, B + 24 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (7 \, B + 6 \, C\right )} \cos \left (d x + c\right ) + 15 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1 
/2),x, algorithm="fricas")
 
output
2/105*(2*(35*A + 28*B + 24*C)*cos(d*x + c)^3 + (35*A + 28*B + 24*C)*cos(d* 
x + c)^2 + 3*(7*B + 6*C)*cos(d*x + c) + 15*C)*sqrt((a*cos(d*x + c) + a)/co 
s(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)
 
3.5.84.6 Sympy [F]

\[ \int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))* 
*(1/2),x)
 
output
Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)** 
2)*sec(c + d*x)**2, x)
 
3.5.84.7 Maxima [F]

\[ \int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1 
/2),x, algorithm="maxima")
 
output
4/105*(105*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
 1)^(3/4)*((A*d*cos(2*d*x + 2*c)^2 + A*d*sin(2*d*x + 2*c)^2 + 2*A*d*cos(2* 
d*x + 2*c) + A*d)*integrate((((cos(10*d*x + 10*c)*cos(2*d*x + 2*c) + 4*cos 
(8*d*x + 8*c)*cos(2*d*x + 2*c) + 6*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 4*c 
os(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(10*d*x + 10*c) 
*sin(2*d*x + 2*c) + 4*sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 6*sin(6*d*x + 6* 
c)*sin(2*d*x + 2*c) + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2* 
c)^2)*cos(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 
2*c)*sin(10*d*x + 10*c) + 4*cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 6*cos(2*d* 
x + 2*c)*sin(6*d*x + 6*c) + 4*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(10*d 
*x + 10*c)*sin(2*d*x + 2*c) - 4*cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 6*cos( 
6*d*x + 6*c)*sin(2*d*x + 2*c) - 4*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(7 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(10*d*x + 10*c) + 
4*cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 6*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) 
+ 4*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(10*d*x + 10*c)*sin(2*d*x + 2*c 
) - 4*cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 6*cos(6*d*x + 6*c)*sin(2*d*x + 2 
*c) - 4*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(7/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c))) - (cos(10*d*x + 10*c)*cos(2*d*x + 2*c) + 4*cos(8*d*x 
 + 8*c)*cos(2*d*x + 2*c) + 6*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 4*cos(...
 
3.5.84.8 Giac [F]

\[ \int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1 
/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.84.9 Mupad [B] (verification not implemented)

Time = 21.75 (sec) , antiderivative size = 479, normalized size of antiderivative = 3.26 \[ \int \sec ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\left (\frac {A\,4{}\mathrm {i}}{3\,d}-\frac {\left (56\,B+48\,C\right )\,1{}\mathrm {i}}{105\,d}\right )+\frac {\left (140\,A+280\,B\right )\,1{}\mathrm {i}}{105\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}+\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\left (\frac {A\,4{}\mathrm {i}}{7\,d}-\frac {\left (8\,A+8\,B+16\,C\right )\,1{}\mathrm {i}}{7\,d}+\frac {\left (4\,A+8\,B\right )\,1{}\mathrm {i}}{7\,d}\right )+\frac {A\,4{}\mathrm {i}}{7\,d}-\frac {\left (8\,A+8\,B+16\,C\right )\,1{}\mathrm {i}}{7\,d}+\frac {\left (4\,A+8\,B\right )\,1{}\mathrm {i}}{7\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^3}+\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\left (-\frac {A\,4{}\mathrm {i}}{5\,d}+\frac {C\,16{}\mathrm {i}}{35\,d}+\frac {\left (28\,A+56\,B+112\,C\right )\,1{}\mathrm {i}}{35\,d}\right )-\frac {\left (28\,A+56\,B\right )\,1{}\mathrm {i}}{35\,d}+\frac {\left (28\,A+112\,C\right )\,1{}\mathrm {i}}{35\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2}-\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (140\,A+112\,B+96\,C\right )\,1{}\mathrm {i}}{105\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )} \]

input
int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/c 
os(c + d*x)^2,x)
 
output
((a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(exp(c*1i + 
 d*x*1i)*((A*4i)/(3*d) - ((56*B + 48*C)*1i)/(105*d)) + ((140*A + 280*B)*1i 
)/(105*d)))/((exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)) + ((a + a/ 
(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(exp(c*1i + d*x*1i) 
*((A*4i)/(7*d) - ((8*A + 8*B + 16*C)*1i)/(7*d) + ((4*A + 8*B)*1i)/(7*d)) + 
 (A*4i)/(7*d) - ((8*A + 8*B + 16*C)*1i)/(7*d) + ((4*A + 8*B)*1i)/(7*d)))/( 
(exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^3) + ((a + a/(exp(- c*1i 
 - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(exp(c*1i + d*x*1i)*((C*16i)/( 
35*d) - (A*4i)/(5*d) + ((28*A + 56*B + 112*C)*1i)/(35*d)) - ((28*A + 56*B) 
*1i)/(35*d) + ((28*A + 112*C)*1i)/(35*d)))/((exp(c*1i + d*x*1i) + 1)*(exp( 
c*2i + d*x*2i) + 1)^2) - (exp(c*1i + d*x*1i)*(a + a/(exp(- c*1i - d*x*1i)/ 
2 + exp(c*1i + d*x*1i)/2))^(1/2)*(140*A + 112*B + 96*C)*1i)/(105*d*(exp(c* 
1i + d*x*1i) + 1))